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I.  INTRODUCTION 
     In 1994, subsidence features were identified on Interstate 70 in eastern Ohio.  These 

features were caused by collapse of old mine workings beneath the highway.  An attempt 

was made to delineate these features using geophysical methods  with no avail. The 

geophysical methods that were tried comprised ground penetrating radar, seismic 

refraction, and electromagnetics.  Subsequently, drilling was employed as the primary 

technique to delineate the voids. The collapse was believed to be caused by active mine 

subsidence which was exacerbated by the dewatering of adjacent abandoned mine 

workings. It is postulated that there was too much overburden for the radar to penetrate to 

the mined interval at the designated site.  The tunnels were too deep to be detected by the 

electromagnetic technique utilized, and the seismic refraction method lacked adequate 

resolution to delineate the voids. 

     In view of the above discussion, it is imperative to know if there is a geophysical 

technique that will focus on areas of possible future collapse?  There exist many miles of 

highway that have been built over shallow coal seams, mined in the late 1800’s and early 

1900’s.  Generally, the voids left by mining were not adequately mapped. Therefore, 

there are numerous sites susceptible to future collapse.  Drilling would be prohibitively 

expensive as a searching tool.  This study tested various geophysical methods to 

economically locate areas of possible future highway collapse, which should receive 

detailed study.  The geophysical tools investigated in this study consisted of  ground 

penetrating radar (GPR), gravity, P-wave and S-wave seismic refraction, seismic 

reflection, and surface wave studies.  In 1998, in accordance with  the recommendation of 

the Ohio Department of Transportation (ODOT) personnel, one site was selected in 

Jackson County and another in Vinton County. Both sites were located along Ohio Route 

32.  At these sites coal mines were known to exist beneath the highway and there was 

some evidence to suggest current failure.  Phase I of this project intended to identify the 

capabilities and effectiveness of various geophysical techniques for detecting mine voids 

under highways.  Subsequently, the most successful method(s) would be employed for 

use during the Phase II.  In 1999 a Phase II test site was chosen in Perry County, Ohio.  

At this location, coal mines were also known to exist, but there was no surface evidence 



 - 10 - 

to suggest that mine collapse had or would occur.  Only two of the Phase I methods were 

tested during Phase II.  These two methods were seismic refraction and dipole-dipole 

resistivity.  
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II.  RESEARCH OBJECTIVES 
The study consisted of two phases with distinct but related objectives. 

A.  Phase I 

We tested several geophysical methods at a site with known collapse potential to 

determine which method or combination of methods would be most viable to detect and 

provide subsurface information on the problem zone.  An important study goal was to 

identify a geophysical method that could be used on long sections of highway at an 

acceptable cost.  The study’s intent was not to develop detailed mapping of the sites.  The 

methods tested were: 

a) seismic refraction with compressional waves, 

b) seismic refraction with shear waves, 

c) fixed offset seismic reflection, 

d) gravity, 

e) 2D resistivity imaging,  

f) ground penetrating radar (GPR), and 

g) spectral analysis of surface waves (SASW). 

h) Surface wave profiling (constant offset) 

The seismic refraction investigations included tests of several seismic energy sources.  

These methods were studied to evaluate their ability to develop pertinent data while  

suppressing the effects of traffic noise. 

Experience from past studies had  revealed that a combination of gravity and seismic 

refraction with compressional waves was effective in studying the bedrock surface and 

identifying zones of incompetent rocks.  In this study, we utilized the elastic wave 

generator (EWG III) as an impulsive source of seismic energy.  Our previous experience 

studying fractured rock, has shown that shear wave refraction was even more sensitive to 

fractures than compressional wave refraction.  A swept frequency vibrator, the Minivib, 

was an alternate seismic source, which we felt should be tested for this purpose because it 

might produce a signal which could be better separated from traffic noise.  The same 

situation might also be true for SASW, using the Minivib as a wave source.  The 2D- 

resistivity imaging would be nearly immune to the effects of traffic vibrations.  It might, 
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however, be ineffective in areas with nearby fences and guardrails.  The data were 

analyzed to determine the experimental designs to pursue for Phase II. 

      

 

B.  Phase II 

The objective for Phase II was to test the techniques developed in Phase I along a 4.5-km 

section of highway.  This test section was selected in consultation with ODOT personnel.  

The section was overlying several mapped abandoned underground mines.  The selected 

geophysical techniques and data analysis designs from Phase I were implemented with 

improvements subsequently identified.  Conditions that were likely to influence 

geophysical data, which were likely to be common in the highway margin environment, 

were to be identified. 

 

After the geophysical data were processed and interpreted, zones underlain by competent, 

intact rock and zones of potential problems underlain by less competent, broken rock 

would be identified.  Subsequently, test locations would be identified for ODOT to 

conduct borings.  The results of these borings would be interpreted jointly by project 

scientists and collaborators and by ODOT personnel to determine the success of the 

geophysical surveys in locating problem zones.   
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III.  GENERAL DESCRIPTION OF THE RESEARCH 
 

This section of the report is divided into 3 subsections, one for each of the 3 sites.  Figure 

1 is a map showing the locations of the 3 sites.  The first subsection contains the most 

details.  Many aspects of the studies at the other two sites are similar.  In the second and 

third subsections only significantly different aspects are discussed in detail. 

 

A.  Jackson County, Ohio – Phase I 

a.  Local Geology and Mining History 

Southeastern Ohio is dominated by Carboniferous stratigraphy.  Classification of the 

region's stratigraphy was completed as a result of early resource exploration for coal in  

southeastern Ohio, as documented by Crowell (1991).  Coal was first discovered in 1799 

and during the subsequent years several economic coal seams (Clarion, Brookville, 

Middle Kittanning, and Winters) were discovered.  The discovered sites were extensively 

mined from shallow coal mines during the period from 1874 to 1923.  As a result, the 

removal of the coal left structural voids.  Given the near-surface location of the 

abandoned mine workings, it was necessary to determine the local geology and which 

coal seam, or seams, were located at a depth interval of 5 to 20 feet beneath the surface at 

the field site.  

 

To aid in the interpretation of the geophysical field data, it was necessary to determine 

the near-surface geology and the absence or presence of coal below the site.  The test site, 

which was recommended by ODOT, is shown on the map in Figure 1.  ODOT conducted 

an extensive subsurface investigation in November 1998, drilling at 27 stations along the 

north and south sides of westbound State Route 32 (Figure 2).  The compilation of the 

drilling data revealed that the coal seam beneath the field site is the Clarion coal seam or 

coal number 4A. The Clarion coal lies in the Clarion member of  
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Figure 1. Map of southeastern Ohio with the study sites noted. 
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the Alleghany Formation of the Pennsylvanian System.  The drilling data placed the top 

of the coal horizon at a depth between 1.5 and 4.6 m (5 to 15 feet) with an average depth 

of 2.7 m (9 feet) below the road surface (Figures 3 and 4).  The range in depths is related 
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to the extensive mining of the coal and resulting collapse features due to its removal in 

the area.  

 

Alleghany Formation 

The Allegheny Formation is the middle formation of the strata represented from the 

Pennsylvanian System within the region.  This formation overlies the Pottsville 

Formation and is partially overlain, in some areas, by the Conemaugh Formation.  The 

Allegheny Formation is recognized as one of the region’s most valuable formations, as it 

contains economic deposits of coal, clay, and limestone (Stout, 1927).  Figure 5 is a 

generalized stratigraphic section of the Alleghany Formation as it exists in Vinton 

County, defined by  Stout in 1927.  The section is taken from Vinton County, which is 

approximately 5 miles east from the field site.  Vinton County's stratigraphic information 

is used as the model for the area since the stratigraphy of Jackson County has not been 

extensively investigated at this point.  This formation has an average thickness of 

approximately 236 feet and is comprised of limestones, shales, clays, sandstones, flint 

and numerous coal seams.  The near surface location of the Clarion coal and the focus of 

this study constrain the relevant geology of the site to include the Vanport, Scrubgrass, 

Clarion, and Winters Members of the Allegheny Formation.   

 

The Vanport Member has an average thickness of 7 feet and is comprised of two distinct 

lithologies, a gray fossiliferous limestone that varies in thickness from 1.2 to 3 m (4 to 10 

feet) and a dark carbonaceous shale that has an average thickness of 0.6 m (2 feet).  

Underlying the Vanport Member is the Scrubgrass member.  The Scrubgrass Member has 

an average thickness of 1.8 m (6 feet) and contains coal and shale lithologies.   
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Figure 4.  Lithologic interpretation of drilling logs on the south side of State Route 32 in 
Jackson County (provided by ODOT). 
 

Soil

Brown Sandy Clay

Limestone

Black Shale

CoalCoal

Weathered Shale

Gray Sandstone

Brown Clay

Soil

Brown Silty Clay

Brown  Clay

Black Jointed
Coaly Shale

Clay to Shale

Gray Sandstone

Soil to
Brown Silty Clay

Brown Silty
Sandy Clay

Brown Silty Clay
with 

Stone Fragments

Sandstone

Soil

Brown Clayey Silt

Gray Limestone

Black Shale

Coal

Shale

Sandstone

24.5

0

25

15

20

10

5

0

15

20

10

5

0

25

15

20

10

5

0

15

10

5

17

55 35 60
994 + 20 6LT 994 + 75 6LT 995 + 10 6LT 995 + 70 6LT

Dark Gray Siltstone

Coal

Siltstone

Coal

Clay to Shale

Clay to Shale



 - 20 - 

 

 

 

 

 

Figure 5.  Generalized stratigraphic section of the Allegheny Formation in nearby Vinton 

County. (Stout, 1927) 
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The Scrubgrass coal is characterized as a thin shaly coal that has an average thickness of 

0.28 m (11 inches) and is only locally present.  The lower portion of the Scrubgrass is 

recognized by the black carbonaceous shale that has an average thickness of 1.5 m (5 

feet).  The Scrubgrass Member is underlain by the Clarion Member.   

 

The Clarion Member has an average thickness of 7 m (23 feet) and is subdivided into 

four lithologies.  The top of the Clarion is recognized by the Clarion coal or coal 4A.  It 

is persistent and normally developed and its thickness ranges from 0.3 to 1.8 m (1 to 6 

feet). The coal is underlain by a clay that is distinguished by its plastic character and 

ranges in thickness from 0.6 to 4.9 m (2 to 16 feet). Underlying the clay is sandstone that 

ranges in thickness from 1.5 to 7.6 m (5 to 25 feet) and is characterized as a massive 

loosely cemented micaceous sandstone.  At the base of the Clarion Member is a gray 

siliceous shale that has an average thickness of 1.2 m (4 feet).  Underlying the Clarion 

Member is the Winters Member.   

 

The Winters Member has two distinct lithologies, coal and clay.  The Winters coal has an 

average thickness of 1.8 m (6 feet) and is comprised of a coal whose composition varies 

from pure to shaly with a range in thickness from centimeters to 1.2 m (4 feet) (Stout, 

1927).  Beneath the coal is a clay that is described as plastic and varies in thickness from 

1.8 to 30 m (6 to 10 feet).  Figure 6 shows two measured sections (section 4192 & 16191) 

of stratigraphy obtained by the Ohio Division of Geological Survey.  

 

The two sections and the geology described are located within a mile radius of the field 

site.  Both sections show that the Clarion coal member does exist, with a slight variance 

in thickness.  Section 4192 shows the Clarion overlain by the Lower Kittanning Shale, 

Vanport ore, limestone, and shale and the Scrubgrass shale.  Section 4192 also shows the 

Clarion underlain by the Winters coal and clay.  The members present below the Winters 

have not been identified.  The geology present in Section 16191 agrees with that shown 

in Section 4192, exhibiting the Clarion overlain once again by the Vanport Limestone 

and shale, and the Scrubgrass shale.  
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   Figure 6.  Two measured sections of the geologic formations in the zone of interest  
   in Jackson County.  (Ohio Division of Geological Survey) 

 

Figure 6.  Two measured sections of the geologic formations in the zone of interest in 
Jackson County. (Ohio Division of Geological Survey) 

 

The geology of these two sections is representative of the geology recorded during 

ODOT's onsite drilling investigation and the generalized stratigraphic section of the 

Allegheny Formation.  With the geology determined, models could be produced using the 

geological information to aid in the interpretation of the geophysical results gathered at 

the field site. 

 

b.  Methods and Acquisition 

Six types of geophysical methods were employed to locate potential collapse areas.  The 

methods consist of compressional (P) and shear (S) wave seismic refraction, P wave 

reflection, resistivity, gravity, ground penetrating radar (GPR), and seismic surface 
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waves.  Each method has proven to be useful in previous studies of the subsurface of the 

earth (Burger, 1992; Reynold, 1997).   

 

Seismic Refraction 

Seismic refraction studies are useful in determining depth to bedrock and lateral changes 

in velocities, indicating changes in the subsurface material and, more importantly, 

potential collapse features.  Two types of seismic refraction data were collected at the 

site, P and S wave refraction.  Once collected, a comparison of the P and S wave data was 

completed to detect any variations in bedrock competence above the abandoned coal 

mine tunnels.  The P and S wave refraction data were collected using a 36 channel 

Strataview engineering seismograph with 30 hertz geophones.  A 146-m (480-foot) line 

with a geophone station spacing of 3.048 m (10 feet) was employed on both the north and 

south side of west bound State Route 32.  The line geometry for both the P and S wave 

surveys was the same and can be seen in Figure 7 along with the locations of the energy 

source (shot points).  Each line runs parallel to the road and has an offset of 2.4 m (8 feet) 

from the pavement.  The P wave data were gathered using a Bison elastic wave generator 

as an energy source.  The S wave data were gathered using a metal box that was 

orientated 90 degrees to the seismic line.  Each end of the box was then struck at    ± 90 

degrees from the line.  By striking the box in this manner, the polarity of the data was 

reversed in one direction and adding these together effectively canceled out the P waves, 

leaving only S waves.  Elevations of each geophone’s position were surveyed using a 

theodolite to correct the arrival times of each geophone trace. 

 

The collected refraction data were saved into data (DAT) files and  imported into two 

interpretation software packages, SIP by Rimrock Geophysics and Promax by Landmark 

Graphics Corporation.  Travel time curves, bedrock depth models and seismic velocities 

for both the P and S wave surveys were generated using SIP.  Individual seismic records 

for both surveys were generated by Promax to visually show any variations in amplitude 

that indicate lateral changes in the composition or competence of bedrock material.  The 

velocity data generated by SIP along with the travel time curves were searched for 

anomalies that indicate potential collapse areas in the bedrock.  
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Seismic Reflection 

Seismic reflection methods are commonly employed by the hydrocarbon industry and are 

useful in imaging boundaries in the subsurface, such as bedding, faults, and potentially 

voids.  At boundaries where the seismic velocity and/or density of the rock changes, such 

as the margins of voids, some of the seismic energy is reflected back toward the surface.  

At the Jackson County site, a P-wave seismic reflection profile was collected both along 

the median and along the margin of the north shoulder to the west-bound lanes.  These 

data were collected using an IVI-minivibe sweeping 8 seconds from 40Hz to 250Hz.  

Four sweeps were summed at each station.  A single, 30 Hz geophone was located at 

each station at a 3.048 meter (10 foot) spacing, and 36 stations were simultaneously 

recorded using a 36-channel StrataView recording system.  These data (saved as *.DAT 

files on the StrataView) were imported and processed using the ProMax seismic 

processing system at Wright State University.  The voids at the Jackson County site were 

known to be very shallow (~3 meters) from some drill holes, which poses a challenge for 

seismic reflection methods.   

 

Resistivity  

Resistivity data collected in the dipole-dipole configuration were used to generate 2-

dimensional models indicating areas of resistivity highs and lows corresponding to 

potential collapse features.  Resistivity surveys measure the ability of a geologic material 

to resist the flow of electrical current.  Resistivity surveys are used extensively in the 

environmental industry to locate buried metal drums, depth to freshwater-saltwater 

interface, subsurface cavities, and mine shafts.   Resistivity data collected in this survey 

were used to locate subsurface anomalies that correspond to cavities and mine tunnels.  

Both the cavities and mine tunnels may yield extremely high or low resistivity values 

depending on the condition of voids (the amount of collapse and fill material within it) 

and whether the spaces are filled with water or air.  

 

Resistivity data were acquired using the Sting/Swift R1 resistivity meter, consisting of 28 

active nodes attached to metallic spikes.  Resistivity values are obtained by driving the 

metallic spikes into the ground, and fastening the nodes to them.   Current is generated 
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between a pair of the electrodes and potential is measured between another pair in a 

dipole-dipole configuration.  The system automatically sequences through all reasonable 

dipole-dipole configurations of the 28 electrodes.  For each configuration it calculates the 

apparent resistivity.  The resistivity measurement is then stored for later modeling and 

interpretation.  Data were gathered along two 146 m (480-foot) profiles on the north and 

south sides of westbound State Route 32.  The north side of the road had an electrode 

spacing of 1.5 m (5 feet), whereas the south side had an   electrode spacing of 3 m (10 

feet).  The differing electrode spacing allowed for the determination of which spacing 

gave the best resolution of the subsurface to be made. The collected resistivity data were 

downloaded into a two-dimensional modeling program Res2dinv (Loke, 1999) from 

Advanced Geosciences, Inc.  Models were generated and interpreted.   While the models 

themselves show areas of high and low resistivity values, their causes are non-unique.  

The resistivity signature of the mine tunnels could appear either as a high, low or both.  If 

the mine tunnels are filled with water or have moisture present, they will produce a 

resistivity low; whereas, if they are filled with air, they will produce a resistivity high.  

Given that the present condition of the mine is not known, there exists the possibility that 

the mine tunnels could be fully to partially water or air filled.  Ultimately the condition of 

the mine tunnels and causes of the resistivity anomalies were determined through prior 

site knowledge, drilling or excavation. 

 

Gravity 

Gravity surveys detect density variations in the subsurface.  The density anomalies 

indicate lateral changes in subsurface units, which may indicate areas of potential 

collapse features.  Gravity surveys measure variations in the Earth’s gravitational field 

caused by changes in the density of subsurface material.  Gravity surveys have been used 

extensively in hydrocarbon exploration, regional geologic studies, detection of buried 

valleys, and mineral deposit detection.   With the  advance of technology, very small 

changes in density can now be measured.  In order to find these small changes, a micro-

gravity survey method is used to gain adequate detail of the density variations.  Micro-

gravity surveys are conducted on a very small scale and are capable of detecting sub-
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surface cavities as small as 1 m (3 feet) in diameter within 4.5 m (15 feet) of the surface.  

These dimensions are similar to those expected for a mine tunnel.  

 

Gravity data were acquired using a Lacoste and Romberg gravimeter.  Gravity readings 

were taken at 48 stations (Figure 8), spaced at an interval of 3m (10 feet) on the north and 

south sides of west bound State Route 32.  A base station was established at station 25 on 

the north side of the road.  Readings at the base station were taken at the beginning of the 

survey, every hour thereafter, and at the end of the survey.  Base station readings were 

taken to correct for instrument drift and tidal variation as a function of time.  Two 

readings were taken at each station, with the corresponding time of each station reading 

recorded, additional readings were taken if the first two readings did not agree.  

Elevations of the stations were taken using a theodolite to ensure accurate elevation 

control. The gravity data have a precision of ± 0.01 mGals, if the relative elevations are 

known to within 3 cm and the relative latitude of each station is known to within 12 m, 

which is achievable given the technology used. 

After the acquisition of the gravity data, several corrections must be applied.  The data 

must first be corrected for instrument drift and tidal variation as a function of time.   The 

rates of instrument drift between the readings taken at the base station at intervals 

throughout the day were calculated and applied to each survey station's gravity reading.  

This yields a drift corrected gravity reading for each station. The drift corrected reading 

was then multiplied by the gravimeter instrument calibration constant to obtain an 

uncorrected relative gravity reading in milligals (mGals).  Next, the free-air, Bouguer and 

latitude corrections are applied to the uncorrected gravity readings.   The free-air and 

Bouguer corrections depend on knowing the relative elevation of each station.  The 

relative elevation of each station was determined to an accuracy of ± 1cm    

by surveying with a theodolite.  The latitude correction relies on knowing the latitude 

position of each station.  Given that the orientation of  State Route 32 at the site is east-

west and the north and south sides of the road are separated by approximately 30 feet, the  
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latitude correction was effectively removed when the regional gravity trend of the area is 

removed from the gravity data.  The free-air correction is the difference between gravity 

measured at sea level and at a station elevation above sea level, with no rock in between.  

The correction was added to the gravity reading.  The Bouguer correction calculates the 

extra gravitational pull by a infinite slab of rock with a thickness equal to the elevation of 

the station above sea level.  This correction was subtracted.  The resulting gravity value 

after performing these corrections is called the Bouguer anomaly.   

 

The Bouguer anomaly can be calculated using the following formula: 

  
where gB = Bouguer anomaly (mGal) 

 gr = drift corrected value (mGal) 

 er = relative elevation (m) 

 ρ = density of subsurface material (g/cm3). 

The density (ρ) used in this survey was 2.0 g/cm3. 

 
The Bouguer anomaly values for all of the stations, on each side of the highway were 

then imported into Microsoft Excel, where it was graphed so that changes in subsurface 

density could be observed.  Ultimately the lateral variations in density cannot be uniquely 

determined from the Bouguer anomaly.  Supplementary information from drilling, 

excavation, and knowledge of the site's geology is necessary to constrain the 

interpretation of the gravity results.   

 

Ground Penetrating Radar 

Ground Penetrating Radar (GPR) was not one of the methods we had proposed to use 

during this project due to the significant presence of clay in the soil, shale in the 

underlying bedrock, and the depth of the target (especially the Vinton County site).  Later 

in the course of our investigation, however, we decided to check the effectiveness of the 

 ))()(0419.0())(3086.0( rrrB eegg ρ−+=
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GPR.  We did take the opportunity to test GPR at each site using a GSSI SIR-3 radar 

system available at Wright State University.   

 

GPR surveys involve sending pulses of radar signals into the ground from an antenna 

dragged or rolled across the surface.  At interfaces in the subsurface where the dielectric 

properties change (i.e., boundaries where the radar wave transmission velocity changes), 

part of the radar signal is reflected and may be received by the antenna at the surface.  At 

the boundary of a void, being a boundary between rock material and air or water (either 

resulting in a significant change in radar velocity), a substantial reflection would be 

expected to occur.  However, the presence of clay and water in the overlying soil and 

rock can considerably attenuate the radar signal and limit depth penetration.  We tested 

both 80MHz and 300 MHz antennae, the lower frequency used especially because it 

would potentially give the greatest penetration. 

 Seismic Surface Wave Investigation 

Dr. Luke and B. Avar (Universtiy of Nevada at Las Vegas) investigated seismic surface 

wave methods at the site.  Due to their dispersive nature in layered media and their ease 

of measurement, surface waves are an attractive choice for developing shear stiffness 

profiles (Stokoe et al., 1994) and detecting subsurface anomalies, such as cavities (Luke 

and Chase, 1997) and obstacles (Gucunski et al., 1992; Luke and Brady, 1998). In this 

study, two approaches were investigated for rapid assessment of potential problem 

areas,sounding (the SASW method) and profiling (constant-offset method). 

Data collection, reduction, and interpretation 

Sounding Approach 

In the sounding mode, the Spectral-Analysis-of-Surface-Waves (SASW) method was 

employed to develop shear wave velocity profiles at distinct locations.  The SASW 

method is a non-intrusive, non-destructive site investigation technique that employs 

seismic surface waves to generate one-dimensional shear wave velocity profiles of the 

subsurface (Stokoe et al., 1994). This approach is intended to delineate areas of reduced 

overall stiffness, which might be caused by cavities or collapsed regions above cavities.  

 

Equipment used included: 
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• Geophones, 2 ea., resonant frequency 4.5 Hz, manufactured by Mark Products 

• Dynamic signal analyzer, two channel, Stanford Research Systems model SR-

780 

• Sledge hammer and various smaller hammers 

• Elastic wave generator, Bison EWG-III (property of Wright State University) 

 

Surface wave measurements were collected at multiple receiver spacings using a 

common center point. The smallest spacing was 0.5 m.  The spacing was doubled 6 times 

until a maximum of 32 m was attained. The spacing refers to the distance between 

receivers, which is also equal to the source-to-near-receiver distance. For smaller 

spacings, source energy was generated by dropping or pounding with hammers. An 

elastic wave generator (EWG) was used for larger spacings.   

 

SASW measurements were conducted with the source placed sequentially on opposite 

sides of the geophone pair, in forward (waves travelling east) and reverse (waves 

travelling west) directions.  Only the measurements in the direction having superior 

quality in terms of resolution and coherence were used for shear wave velocity profile 

calculations. However, we note that such a “loss of quality” might be due to the presence 

of a cavity and should be considered qualitatively in that sense. 

  

SASW measurements were performed at six locations, designated by letters, at the 

Jackson County site (Figure 9).   The position of each setup is described with respect to 

linear arrays running from west to east along the median and the north shoulder of the 

road. The arrays extended 150 m (500 ft), from ODOT Sta. 993 to Sta. 998. (There are 30 

m (100 ft) between ODOT stations.) The flagged WSU stations, spaced at 3.0 m (10 ft) 

intervals, are labeled 0 (corresponding ODOT Sta. 993) through 50 (corresponding 

ODOT Sta. 998).  
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Figure 9.  Surface wave study locations at the Jackson County site. 

 

Setups A, B and C were situated in the median. The width of the median is 12 m  (40 ft ). 

The SASW arrays are approximately 1.5 - 2 m north of the WSU flags. For all SASW 

setups on the median, the maximum receiver spacing used was 16 meters. 

Setup A is at Sta. 995+40 (WSU Sta. 24), 1.3 m south of the centerline of the median and 

in line with a patch on the highway marking a repair necessitated by the collapse of an 

abandoned coal mine. The repaired section extends from Sta. 995+15 to 995+65. (ODOT 

gives the position of the center of the test pit at Sta. 995+50.)   Setup B is at ODOT Sta.. 

997+50 (WSU Sta. 45), and approximately 2 m south of the centerline of the median. 

Setup C is at ODOT Sta. 993+40 (WSU Sta. 4), and approximately 1.5 m south of the 

centerline of the median.  Setups D, E, and F were on the north shoulder, approximately 

1.5-2 m north of the pavement edge, and also spaced 60 m (200ft) apart. For all SASW 

setups on the north shoulder, the maximum receiver spacing used was 32 meters.  Setup 

D is at ODOT Sta. 997+60 (WSU Sta. 46), at the east end of test section. Setup E is 

approximately at the center of the test section, at ODOT Sta. 995+40 (WSU Sta. 24).  

Setup F is at the west end of test section, at ODOT Sta. 993+40 (WSU Sta. 4). 
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In an SASW measurement, shear wave velocity profiles are generated through a data 

reduction process involving the development of experimental dispersion curves, followed 

by inversion. Time histories collected at a pair of geophones are processed in real time 

using the dynamic signal analyzer, to yield cross power spectrum in terms of phase, and 

coherence. After this initial step, data reduction was completed in the laboratory using 

the MATLAB computer program.  

 
The process of development of experimental dispersion curves involves: 

1. Selection of best-quality phase diagrams among multiple iterations for each receiver 

spacing 

2. Removal of undesirable portions of the record through masking 

3. Unwrapping the wrapped phase information 

4. Calculating Rayleigh wave velocity as a function of wavelength 

5. Combining data from multiple spacings into a composite dispersion curve 

6. Condensing the composite dispersion curve to approximately 100 points, but only if 

unique aspects of the curve are not suppressed by this action. [The scatter in the data 

may be important for cavity detection.] 

 

In the inversion process, a profile indicating the variation in shear wave velocity with 

depth is generated by iteratively fitting a theoretical dispersion curve to the experimental 

curve. This is accomplished using plane wave theory assuming propagation of an elastic, 

fundamental-mode Rayleigh wave through a layered medium. The layers are 

characterized by their thickness, shear wave velocity, Poisson’s ratio, and density. The 

curve fit is accomplished through trial and error, by eye.  

 

Since the inversion process is relatively insensitive to reasonable perturbations in density 

and Poisson’s ratio, the same values were used for both soil and rock.  Densities and 

Poisson’s ratios used were 1800 kg/m3 and 0.3, respectively (Munk and Sheet, 1997).   
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Profiling approach 

In the profiling mode, also called the constant-offset approach, measurements are made 

using paired receivers at constant offset and constant spacing in order to observe 

magnitudes and spectral content of body wave interference. This approach is geared 

toward rapid detection of discrete cavities or major weakened zones caused by cavity 

collapse.  

 

In a profiling measurement, the phase-difference data collected in forward and reverse 

directions are compared to detect anomalies.  Fluctuations in the dispersion curves will 

be caused by higher mode conversions and reflection of body waves off the cavity.  This 

higher-velocity interference will reduce the amplitude of the phase difference between 

receivers (Gucunski et al., 1996).  The effects of body wave reflections should be 

stronger in one direction than the other if the stiffness anomaly is closer to one receiver.  

In addition, fluctuations in measured phase difference should be stronger when the source 

is closer to the cavity than in the opposite configuration (Luke and Chase, 1997; Luke 

and Brady, 1998).  

 

The equipment set used for profiling measurements was the same as that used for SASW 

measurements. Source energy was applied with either a sledgehammer or the EWG. 

Receiver spacing was selected to target cavities at a depth of 5 to 8 m.  For a site lacking 

significant stiffness contrasts, the sampled depth of the surface wave is one-third to one- 

half of the wavelength (Vrettos and Prange, 1990).  Surface wave measurements generate 

useable data over the approximate wavelength range of one-half to two times the receiver 

spacing; thus, the sampled depth is on the order of one-sixth to one times the receiver 

spacing.  The preferred receiver spacing was 8 m, to match the largest depth of cavity 

expected.  

Constant offset (profiling) measurements were performed along a single 125-m (420-ft) 

long array (Figure 9) using a 6.0 m offset and 8.0 m receiver spacing (Setup G). Source 

energy was applied with a sledgehammer.  This setup was located on the north shoulder, 

starting from WSU Sta. 4 (ODOT Sta. 993+40) and ending at Sta. 44 (ODOT Sta. 

997+40).  
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Data reduction for profiling measurements was quite straightforward. Phase difference 

data for each station were unwrapped automatically for the forward and reverse 

directions using a standard procedure coded into MATLAB.  The phase data were then 

manually adjusted in increments of 2π radians so that they matched at slightly negative 

values in the range of 15 to 20 Hz.  In making the manual correction, we assume that 1) 

the effective sampling depth for surface wave is approximately one-third of the 

wavelength, 2) the mines are no deeper than 8 m, 3) the Rayleigh wave velocity of the 

rock beneath the mines is approximately 100 m/sec, and 4) the earth beneath the mines is 

homogeneous. Thus, the frequency 20 Hz corresponds to a sampled depth of 

approximately 16 m, which is well beneath the mines. We applied manual corrections to 

the phase data after automatic unwrapping so that they match at a value slightly less than 

zero (approximately –1 radian) at a frequency of 20 Hz. The adjustments, which are 

necessitated by shortcomings in the automatic unwrapping process, are made in 

increments of 2π radians. No other corrections are made, although other errors caused by 

automatic unwrapping may be present.  Other errors can be recognized by sudden shifts 

that are in increments of 2π radians, after which the curves remain parallel. An example 

of this will be seen later in this report at the 60-Hz frequency of the record collected at 

Sta. 72 on the shoulder at the Vinton County site (Setup K). 

 

Significant differences in phase between forward and reverse data sets, other than the 

unwrapping errors described above and the differences at frequencies less than 20 Hz, are 

assumed to be caused by the presence of cavities or rubble zones between the receivers. 

Differences at higher frequencies represent shallow features, which may be unrelated to 

the mines. For example (shown later in this report), the difference between forward and 

reverse measurements at Sta. 68 on the shoulder at the Vinton County site is large, but 

the two curves only diverge at frequencies higher than 60 Hz. Assuming a shear wave 

velocity of 500 m/sec, the effective depth of the anomaly is less than three meters.  

Adjoining records can be examined to estimate the lateral extent of the anomalies.  

 

c.  Data, Results, and Interpretation 
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Seismic Refraction Results 

P-wave Results 

SIP models 

The SIP software by Rimrock Geophysics was used to read each seismic record and pick 

their first breaks.  Travel time curves were generated from the first break times and the 

source to geophone distances.  We examined linear segments of each curve and assigned 

a layer number to each point on the curve corresponding to its refraction interface.  

(Travel time curves are included as Appendix A).  To gain an insight into the depth of the 

interface generating the refraction, the travel times from shot point A, spread A on the 

north side were imported into Refractsolve, a program that calculates the depth to each 

refraction interface from travel time data.  The resulting model (Appendix B) revealed 

that the source of the refraction energy (second interface on model) was at an average 

depth of  3.4 m (11 feet), which (based on the drilling results from ODOT) is the average 

depth to the base of the coal seam.  Depth models for each profile (Figure 10 is the north 

side and Figure 11 is the south side) were generated by SIP through a process of time 

delay calculations, 3 iterations of ray path tracing, and adjusting the models based on 

those results.  It should be mentioned that the depth  to bedrock on the models generated 

is in error, given the presence of voids beneath the site that slow the seismic waves and 

consequently increase the travel times.  The most important information is the pattern of 

peaks and valleys shown on the models.  The patterns on the models are the result of the 

refracted rays taking longer  times traveling from the base of the coal back up through the 

mined out areas than through intact rock.  The longer travel time makes the depth in the 

vicinity of the voids appear deeper than they actually are.  The peaks represent more 

correct depths where the waves pass through intact portions of the coal.   
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Figure 10.  Apparent depth profile along the north side from P-wave seismic refraction. 

 

 
Figure 11.  Apparent depth profile along the south side from P-wave seismic refraction 
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Signal Attenuations 

The P wave refraction data collected at the site revealed distinct zones of signal 

attenuation across both the north and south side profiles, which are readily visible from 

the trace displays generated by Promax.  Figure 12 shows two shot records, from 

geophone positions 1-36  with different shotpoints, located on the north side of the road.  

Record 1 has a shot point located at geophone position 12, whereas record 2 has a 

shotpoint located 3 m (10 feet) west of geophone position 1.  The two records displayed 

in Figure 12 are the raw field data.  The records show two distinct zones of signal 

attenuation detected between individual geophone positions .  The first zone shown on 

both records is between geophone positions 17-24, and the second, recorded between 

geophone positions 12-15 is visible only in record 2, due to the near proximity of the 

source to the geophone position in record 1.  Records for both spreads (stations 1-36 and 

13-48) located on the north and south sides of the road were visually inspected for signal 

attenuations.  The position where the signal attenuations were  observed was recorded  

 

Figure 12.  P-wave sesimic data records showing signal attenuation. 
 

 

and a map showing their locations was made.  Figure 13 shows the zones (marked by 

brackets) where the signal attenuations were seen on individual records.  A number 

besides a bracket indicates more than one record detected signal attenuation within that  
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bracketed zone.  Figure 13 shows that there is good correlation between multiple 

refraction records locating zones of signal attenuation. The correlation indicates that the 

signal attenuations recorded in both profiles detected the mined out areas of coal, the 

voids as a result of the coals removal and the intact portions of coal left in place to 

support the roof.  The signal attenuations are likely the result of wave scattering caused 

by the fractured rock in the mined areas and the high absorption of the energy of the 

refracted waves traveling from below the coal layer back through the mined out areas or 

voids to the geophones at the surface.   

 

Shear wave Results 

SIP Models  

Depth models (Figure 14 is the north side, and Figure 15 is the south side) were 

generated through the same process as the P wave depth models. We  picked the first 

breaks on the S wave refraction records and generated travel time curves for both the 

north and south side profiles (Travel time curves are included as Appendix C).   

 

To gain a general idea of the depth to the refracting interface, the travel time data from 

shotpoint D, spread A was imported into the refraction interpretation program 

Refractsolve.  The model, which is shown in Appendix D, revealed the source of the 

refraction energy (indicated by the second interface) to be at a depth of approximately 1.5 

m (5 feet).  This corresponds to the average depth to the base of the Vanport Limestone, 

based on the drilling results from ODOT.  In this case the source of the shear wave 

refraction was 1.9 m (6.2 feet) above that of the P wave refraction.  
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Shear-wave Results 

SIP models  

Depth models (Figure 14 is the north side, and Figure 15 is the south side) were 

generated through the same process as the P-wave depth models. We  picked the first 

breaks on the S-wave refraction records and generated travel time curves for both the 

north and south side profiles (Travel time curves are included as Appendix C).   

 

To gain a general idea of the depth to the refracting interface, the travel time data from 

shotpoint D, spread A was imported into the refraction interpretation program 

Refractsolve.  The model, which is shown in Appendix D, revealed the source of the 

refraction energy (indicated by the second interface) to be at a depth of approximately 1.5 

m (5 feet).  This corresponds to the average depth to the base of the Vanport Limestone, 

based on the drilling results from ODOT.  In this case the source of the shear wave 

refraction was 1.9 m (6.2 feet) above that of the P-wave refraction.   

 

Once again it should be mentioned that the depth to bedrock shown by the models was 

most likely representing something other than true depth. The important information is 

the pattern of peaks and valleys present on the models as a result of the disturbance of the 

rock layers in the area slowing the wave speed.  In both S-wave profiles the depths to 

bedrock calculated by the program were overall at shallower depths and had a subdued 

bedrock topography compared with their P-wave counterparts.  The peaks present on 

both profiles are assumed to be representative of the intact portions of bedrock, whereas 

the dip in depth across the profile or valley patterns are due to incompetent rock above 

the voids that have slowed the travel times of the refracted rays.  There is a subdued 

correlation between the P-and S-wave depth models and the reason is not clearly 

understood.  

 

 

Signal Attenuations 

It was initially expected that similar zones of signal attenuation would occur on the S- 

wave as on the P-wave data, but no distinct zones of signal attenuation were observed in 
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the S-wave records.  Figure 16 shows the S-wave records at the same 2 locations as the 

previously displayed P wave records in Figure 12.    

 

 
 Figure 16.  S-wave seismic data records. 
 

Corresponding records had the same geophone and shotpoint geometry.  By viewing each 

record it can be seen that the strength of signal present in the S-wave records remains 

relatively constant across the spread, in contrast to the P-wave data.  The lack of signal 

attenuation indicates that the S waves did not differentiate as effectively the locations of 

the mined out areas from areas with coal.   

 

There are three most likely  reasons that the known voids in the survey area did not 

attenuate the signal of the S wave data:  

(1) The presence or absence of moisture in the strata below the site will  

not effect the S wave data but will effect the P wave data, as shear wave velocities 

are insensitive to moisture content. 

(2) The refraction energy for the S waves may be generated in a layer above the 

coal that is relatively intact and not as fractured as the coal.   

(3) The refraction energy for the S waves may be generated in a layer that is too 

thin for the P wave to effectively propagate. 

 

Resistivity Results 
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The resistivity data collected at the site were gathered with two different station spacings.  

The north side of the road had a station spacing of 1.5 m (5 feet), whereas the south side 

had a station spacing of 3 m (10 feet).  Figure 17 shows the apparent resistivity profile 

and the result of inverting this data to a model for the north side of the road.  Figure 18 

shows the corresponding results for the south side.  There are three parts in each figure.   

The top section is a pseudosection representation of the measured apparent resistivity.  

The lowest of the three figures is the 2D model of the true resistivity created by the least-

squares inversion technique.  The middle figure is the apparent resistivity psuedosection 

that the model produces.  A good fit is when the top and middle figures are very similar.  

A quantitative measure of the goodness of fit is the RMS error given above the lowest 

figure.  The interpretation is based on the model , i. e., the lowest of the three figures.  It 

can be seen that the depth range on Figure 17 is half that of Figure 18.  This is due to the 

different spacings of the electrodes, 1.5 and 3 m  respectively.  Both models have two 

large high resistivity zones that could be due to intact bedrock with unmined coal beds.  

Overall, the north side profile has better resolution because of the smaller station spacing.  

Given the near-surface location of the coal, it was expected that the voids present at the 

site would produce relatively high resistivity values.  Without local knowledge of the 

electrical properties of the mined and unmined zones, it is difficult to identify the mined 

areas.  Fortunately, drilling data were collected by ODOT and using that information it 

was determined that the high resistivity values are indicative of the coal and the intact 

bedrock surrounding the mined out areas, whereas the low resistivity values are 

representative of voids or mined out areas of coal.  In general, coal has a large range in 

resistivity values 1 to 100,00 Ω*m (3 – 300,000 Ω*ft), making it extremely difficult to 

identify the extent of intact coal on the resistivity section using published values.   

In the model resistivity cross sections, areas of intact coal and bedrock are indicated by 

their higher resistivity values.  The typical values of the coal and surrounding bedrock in  



 - 45 - 

 

 

Figure 17.  2D resistivity imaging on the north side.   (a)  measured apparent 
resistvity pseudosection.  (b) calculated apparent resisitivity pseudosection. 
(c) Inverse model resistivity section.

Figure 18.  2D resistivity imaging on the south side.   
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the model range from 6 to 9 Ω*m (20-30 Ω*ft), whereas the voids’ resistivity values 

range from 0.6 to 5.5 Ω *m (2-18 Ω*ft).  The low resistivity values of the mined out 

areas and voids indicate a high degree of moisture is present within the voids, as air filled 

voids would yield very high resistivity values. 

 

Gravity Results 

The gravity data (Appendix E) collected at the site were corrected for instrument drift as 

a function of time, and had the free-air and Bouguer corrections applied. The instrument 

drift from the survey showed a maximum drift of 0.09 milligals, which is acceptable and 

indicates good quality control.  It should be noted that no latitude correction was applied 

to the data because the maximum north-south range was only 9 m (29 feet).  The small 

latitude effect would be removed when the regional gravity trend was removed.  First, a 

smoothing operation was applied to each gravity stations reading by taking a weighted 

average with adjacent gravity stations readings to produce a smoothed curve.   

The smoothing operation is applied from the following formula: 

 

 GS,X = smoothed gravity value at station X 

GX - 1 = gravity reading at station (X-1 ) 

 GX = gravity reading at station X. 

 GX + 1 = gravity reading at station (X+1) 

The smoothing function is then applied to each station's reading except stations 1 and 48 

as there is no station before 1 or after 48.   The corrected gravity data can be seen in 

Figures 19 (north side) and 20 (south side).  A regional trend can be observed in the data, 

sloping from the upper left to lower right, causing the gravity data to look as if it is 

dipping.  The regional gravity was removed from the data by drawing a sloping straight 

line representing the regional gravity trend and subtracting the gravity value given by this 

line from the gravity value at each station.  The result of removing the regional gravity 

trend from the data can be seen in Figures 21 (north side) and 22 (south side).  The two 

profiles now appear relatively flat with some noticeable exceptions.  The north side  

XSXXX GGGG ,11 )25.0*50.0*25.0*( =++ +−
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Figure 19.  Smoothed gravity data on the north side. 
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Figure 20.  Smoothed gravity data on the south side. 
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Figure 21.  North side gravity profile with regional trend removed. 
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Figure 22.  South side gravity profile with regional trend removed 

profile shows a gravity low of 0.04 mGals centered in the middle portion of the profile 

whereas the south side show a gravity low of approximately 0.05 mGals over most of the  
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profile. Using the observed signal attenuations and drilling results a generalized gravity 

model of the north (Figure 23) and south sides (Figure 24) was completed using MAGIX 

XL, by Interprex Limited.  Each model has three layers,  representing the geology 

beneath the site and rectangles exhibiting locations of  voids found during analysis of 

geophysical data. The layers have densities of 2.4 (clay), 1.4 (coal) and 2.0 g/cm3 

(sandstone), respectively.  The voids have a density value of 1.0 g/cm3 as it is not known 

whether they are filled with collapsed roof material or not.  The strike direction of the 

voids are oriented due north, with the profile direction oriented due east.  The north side 

model produced an inverted bell shaped gravity low of 0.03 mGals in the middle of the 

profile, but the actual gravity data show an abrupt change in readings near the middle of 

the profile.  The abrupt change in gravity readings takes place over 2 stations (16 and 17) 

where a gravity low is encountered.  The gravity low zone continues across the profile 

until station 32 where the readings increase approximately 0.03 mGals indicating the end 

of the gravity low detected.  The only other notable gravity low can be observed between 

stations 40 and 45.   

 

The south side model produced a gravity low of 0.03 mGals roughly 0.02 mGals less than 

recorded in the field data.  The trend on the gravity model does not correlate to the profile 

generated from the collected data.  The actual data indicate the presence of a low-density 

material in the area.  The presence of  low-density material could have made the density 

contrast of the known voids in the area very small, making them extremely hard to detect.  

The low-density material detected could indicate that fill material was used to construct 

the highway or the voids have collapsed, filling with roof material making their density 

contrast less and harder to image.  
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Overall, it is believed that the north side profile did detect some of the voids beneath the 

site whereas the south side failed to do so.  The failure of the south side to detect the   

voids present beneath the site could be due to the following problems:   

 
1. Lack of sufficient density contrast necessary to detect the voids.  

 
2. The sizes of the voids are smaller on the south side than the north side making 

them harder to detect.  
 

3. The station spacing was too large to adequately resolve the locations of the 
smaller voids. 

 
 Seismic Reflection Results 
 
Little evidence of voids was revealed by the seismic reflection profiles at the Jackson 

County site.  This was  partly  due to the extreme shallowness of  voids, the spacing of  

geophones in the survey, and the noise associated with the IVI-minivibe for the closest 

geophones. Not only did the geophones nearby the vibrator have more spurious engine 

noise related to the truck-mounted vibrator operation, but these nearby stations are the 

most important in recording the shallowest reflections before the reflection arrivals 

merge with refraction energy at farther distances from the energy source.  It is possible 

that for very shallow voids that a smaller and less expensive impact source might prove 

effective; however, if the depth of potential mine voids is unknown and possibly 

significantly deeper, the smaller impact or impulsive sources might not have adequate 

signal penetration.  A much closer station spacing than ~3 meters would likely have had a 

greater chance to image very shallow voids, however, it would have resulted in a 

significantly greater field effort to profile a given length of roadway at a resulting greater 

expense.  In addition, significant time and effort  are involved in processing and 

analyzing seismic reflection data, which also increases as the station spacing gets smaller 

and the data volumes get larger.  In summary, although one might successfully tune the 

parameters for seismic reflection profiling at a particular site and potentially image mine 

voids, it is not likely an economical tool for reconnaissance for voids across large areas. 
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Ground Penetrating Radar Results 

 
At both sites, the original concerns about radar signal attenuation, resulting in a lack of 

depth penetration, were  confirmed by the tests.  The GPR penetration was not significant 

and reflections from voids were not observed.  We tested both 80MHz and 300 MHz 

antennae, the lower frequency giving the potentially greatest penetration, without 

indications of subsurface voids in the data.  At the Jackson County site the GPR 

acquisition was also conducted, in part, over a wet ground because a rainstorm 

terminated the testing.  This additional moisture in the clay-rich soil further attenuated 

the GPR signal and limited penetration.  There are conditions where GPR might be used 

effectively to locate shallow mine voids, but at these clay-rich sites even relatively 

shallow voids (~3 meters) were not observed. 

 

Surface Wave Results 

Sounding Approach 

Composite experimental dispersion curves with theoretical fits are shown in Figure 25 for 

the Jackson site. Resulting shear wave velocity profiles are shown in Figure 26.   

 

Shear wave velocities determined from SASW measurements ranged from 50 m/s, which 

is appropriate for soft soil, to an imposed maximum of 2200 m/s. The upper-bound shear 

wave velocity was selected by considering the maximum P-wave velocity measured at 

the site (2,950 m/s) and a minimum Poisson’s ratio that can be considered reasonable for 

rock (0.1; Goodman, 1980, Table 6.1). 

 

In most cases, interpretation of shear wave velocity profiles was straightforward.  

However, in one case (Setup E), the composite dispersion curves appeared bifurcated.  

This was interpreted to indicate that a cavity was likely present.  We hypothesized that 

the cause of this bifurcation is the partitioning of a significant amount of seismic wave 

energy into a higher-mode response caused by the stiffness contrast presented between 

the competent host rock and the soft, loose rock surrounding an opening.  Of the two 
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Figure 25.  Experimental dispersion curves, with theoretical fits (solid line) for Jackson 

County site.  Different symbols represent SASW measurements at different 

receiver spacings.  
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Figure 26.  Shear wave velocity profiles for Jackson County site.  All profiles are shown, 

with indicated setup highlighted.   
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options the lower-velocity solution is the more appropriate for shear wave velocity 

profiling, since the theoretical model is based on fundamental-mode Rayleigh wave 

propagation.  However, to investigate the difference between solutions for the two forks 

of the experimental dispersion curves, both were used to develop shear wave velocity 

profiles.   

 

In most cases, shear wave velocities increased monotonically, and gradually.  The shape 

of the shear wave velocity profile was not diagnostic to indicate the presence of cavities; 

however, a decreased overall stiffness might be indicative of cavities or loosened zones.  

To facilitate this comparison, the shear wave velocity profiles (Fig. 26) are shown with 

others for the same site in the background.  At this  site, stiffnesses are clearly lower at 

Setups A and D, and higher at Setup F.  Recall that Setup A is over a pavement patch, so 

the reduced stiffness can be attributed to site disturbance.  Setups D and F are at opposite 

ends of the test section on the shoulder.   

 
Profiling Approach 

The unwrapped phase data from the three constant offset measurement arrays are shown 

in Figure 27.  The interpreted anomalies are listed in Table 1, and illustrated in Figure 28.  

The interpretations presented were developed by Mr. Avar.  Dr. Luke performed 

independent analyses, and reached similar conclusions.  Since the interpretation process 

is subjective, some differences are to be expected.  For comparison, anomalies indicated 

in SASW measurements (discussed earlier) in the same vicinity are also provided in the 

Table 1.  
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Figure 27.  Forward (solid) and reverse (dashed) constant-offset measurements on the 

shoulder at Jackson County Site (Setup G).  Station numbers are indicated. 
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Table 1. Seismic anomalies determined by surface wave measurements. Rankings are 0 

for none, 1 for slight, and 2 for significant. [Profiling was advanced in two 
station increments.  The three SASW surveys were centered at the stations with 
table entries.] 

 
 

 

 

  

 

 

 

 

 

Jackson County Site – Shoulder 

Seismic Anomaly Ranking 

WSU Station No. Profiling  (Setup G) SASW 

4 1 0 

6 2  

8 1  

10 0  

12 1  

14 1  

16 2  

18 2  

20 0  

22 1  

24 1 1 

26 2  

28 0  

30 2  

32 0  

34 0  

36 2  

38 1  

40 2  

42 2  

44 1  

46  2 
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Figure 28.  Suspected anomalies indicated by constant-offset measurements for Jackson 

County site.  

 

Ground Truth and Data Comparison  

Upon the completion of  the geophysical surveys,  we supplied ODOT with locations for 

borings to test the accuracy of the geophysical interpretations.  The results obtained from  

these borings were compared to the geophysical interpretations and the effectivenesses of 

the various techniques employed herein were evaluated.  As a consequence of the 

numerous voids encountered during the series of borings, ODOT decided that the road 

was in danger of collapse, closed the road, and performed extensive excavation and 

rebuilding.  The excavation provided a detailed view of the coal mines. No detailed, 

surveyed maps were made of the exposed mine tunnels.  Rick Ruegsegger of ODOT 

constructed a map (Figure 29) from his observations of the tunnels during periodic visits 

to the site.    He extrapolated additional tunnel locations based on the anticipated pattern 

for areas not exposed.  The map he drew from his interpretation of his observations is a 

valuable check on the geophysical results.  Although the map may not be quantitatively  
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correct, it provides strong guidance for the interpretation The map prepared by Mr. 

Ruegsegger is an invaluable qualitative source for calibrating the geophysical data 

interpretation. 

 The resistivity, P- and S-wave refraction travel time delays, and P-wave signal 

attenuations correlated well with the known locations of voids determined by the ODOT 

drilling data.  The gravity data produced questionable results, in that only the north side 

profile produced gravity lows associated with the voids present below the site.  Locations 

of low resistivity values correlated well to locations of P wave signal attenuation.  The 

zones of signal attenuation correlated well with the greater apparent depths to the 

refraction interface shown on the depth models.  The P wave data showed this better than 

the S wave data did.   

 

Seismic surface wave profiling results compare reasonably well with the excavation 

results.  Some anomalies identified as potential cavities that do not correlate with the 

excavation results may be due to scattering from discontinuous limestone blocks near the 

top of bedrock.  SASW did not provide adequate resolution to clearly delineate cavities. 

The seismic reflection and GPR produced no positive results.  Figure 30 shows a 

composite map of (a) gravity, (b) resistivity, (c-e) P and S wave seismic refraction, and 

(f) surface wave profiling on the north side of the road.  Locations of the mine tunnels, 

approximated from Ruegsegger’s map of the excavation, are shown at the bottom of each 

page of the Figure 30(g). 

 

The P-and S-wave depth models were expected to resemble one another, but in this case 

they do not.  There are two possible explanations for this:  

(1) The percent void space present has affected the velocity of the P waves  

slowing them down, but has had no effect on the S waves. 

(2) The refraction for the P wave survey came from below the coal, whereas the S 

wave refraction came from above the coal.   
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(a)  Residual Gravity 

(c)  P-Wave Apparent Depth
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Figure 30, Part1.  Composite of results and interpretation on the North side. 
        a) Residual Gravity, b) Inverse resistivity section, c) P-wave apparent depth, 
       and  g) Boring and excavation interpretation.
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(d)  P-Wave Attenuation
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Figure 30, Part 2.  Composite of results and interpretation on the North side.  
         d) P-wave attenuation, e) S-wave apparent depth, f) Surface-wave cavity identification, 
          g) Boring and excavation interpretation.

(g) Estimated Voids from Excavation

Distance (ft)

0 100 200 300 400

Voids 



 - 63 - 

Given the presence of moisture within the voids from the resistivity data, it is believed 

that the refraction surface in the P wave survey came from the base of the coal.  The 

source of the S wave refraction appeared to be above the coal and it is currently not 

understood why this is.  The increased presence of voids would greatly slow the velocity 

of the P wave data in the vicinity of the void areas, whereas the S waves would not be 

effected, which would account for the subdued topography present on the S wave depth 

model.   

 

The gravity data collected on the north side of the road correlated fairly well with the 

known location of the beginning of voids along the west end of the profile but did not 

correlate well on the east end.  The broad gravity low detected in the middle of the profile 

is likely due to a series of voids present between stations 15-33.  The only other low 

present on the profile is centered on station 40 and is likely the result of a void known to 

exist at that location.   The south side's gravity model shows a broad gravity low across 

the entire profile. The lack of any distinct gravity anomalies indicates that the voids were 

not detected.  There are three possible explanations for this:  

(1) The gravity low across the profile suggests that the mine tunnels  

may be collapsed.  The collapse of roof material into the mine tunnels would 

make the density contrast of the tunnels small and hard to detect in an area where 

a gravity low already exists.   

(2) The station spacing used in the survey may have been too large to detect the 

voids. 

(3) The gravity anomaly produced by the voids may have been obscured by the 

presence of a low-density fill material used to construct the highway. 
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d. Conclusions from Phase I and Recommendations for Phase II 

 

Several geophysical methods were employed to acquire data for the purpose of locating 

voids or potential collapse features at the field site in Jackson County, Ohio.  The broader 

goal is to determine which techniques efficiently define the subsurface beneath such 

sites.  The methods consisted of P and S wave seismic refraction, resistivity, gravity, 

surface wave profiling, spectral analysis of surface waves, seismic reflection, and ground 

penetrating radar.  The first 3 methods produced favorable results, gravity showed effects 

less clearly, surface wave profiling produced encouraging results, while spectral ananysis 

of surface waves, seismic reflection, and ground penetrating radar were ineffective at this 

site.   

 

The resistivity, the P-, and S-wave seismic data accurately detected the voids and intact 

portions of coal present beneath the site.  Two station spacings were used in the 

collection of the resistivity data, 1.5 m (5 ft) and 3 m (10 ft).  The 1.5-m station spacing 

used to collect the north side's resistivity data displayed a better resolution of the 

subsurface and should be used in future investigations.  Although the seismic data 

detected the voids at the site, changing the station spacing to 1.5 m would increase the 

resolution of the data, and better define the void locations.  The gravity surveys were 

expected to be marginal for detecting voids at this site because of their low-density 

contrast.  It was rather surprising that the north side profile did detect the voids. Site 

investigation by surface wave sounding provided stiffness profiles at discrete points and 

established the variability of stiffness in intact and weakened zones.  Complex dispersion 

characteristics appear to be indicative of the presence of cavities; however, the limited 

lateral resolution and the data acquisistion time suggest that it is not likely to be a useful 

technique for tunnel detection.  The profiling method indicated potential cavities at the 

site. This method is much more efficient than sounding for covering large areas. 

 

Future studies having similar goals of locating near-surface potential collapse features 

should use resistivity and P and S wave seismic refraction, because these methods 
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accurately detected the voids, data can be acquired relatively quickly and they are 

relatively inexpensive.  The  recommendations to be made that would increase the quality 

of the data would be:  

(1) Make the station spacing of the resistivity and geophone positions 1.5 m.  The 

smaller station spacing would give the data a better resolution of the subsurface. 

(2) Know the subsurface geology of the area prior to conducting the survey to 

insure you can get the desired results from each method used. 

 

The surface wave profiling method is recommended to detect shallow mine-related 

cavities beneath highway sections. In order to cover long distances, both the data 

collection and interpretation processes could be automated.  Where unexpected, abrupt 

changes in conditions are encountered in profiling mode, the sounding method might be 

applied for better understanding of the subsurface profile.  

 

B.  Vinton County Site – Phase I 

The test site is along Ohio Route 32, 700 feet west of the Racoon Creek Bridge  (Figure 

1).  Data were collected on the north side of the road and in the median.  Geophysical 

methods employed consisted of seismic refraction, seismic reflection, seismic surface 

wave profiling, SASW, 2D-resistivity imaging, gravity and GPR.  These were the same 

methods that were used at the Jackson County site.   

 

a.  Geology and Data Acquisition 

The Vinton County site had similar geology to the Jackson County site but it is more 

highly variable as seen in the ODNR drilling logs.  In this area, five boreholes had been 

previously drilled.  One boring at the eastern end, closest to the highway bridge, 

encountered air-filled voids at depths of 5.4 to 6 m (18 to 20 ft) and 6.3 to 7.8 m (21 to 26 

ft), with a total vertical void height of 2.1 m (7 ft).  Three other borings drilled on the 

shoulder yielded profiles consisting of silty sand, followed by sandstone, then limestone, 

and  shale. The coal seam was encountered in only one of the borings.  A borehole in the 

median penetrated 4.5 m (15 ft) of fill material, followed by clay.  None of the borings 

encountered any groundwater. 
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The seismic refraction and 2D-resistivity imaging were determined to be the most 

successful techniques based on our previous experience at the Jac kson County site.   

Therefore we primarily focused on these methods to assess the Vinton County site.  The 

data acquisition methods and parameters were the same as at the previous site, unless 

noted otherwise.  For seismic surface wave acquisition, two arrays were positioned at the 

site, one on the north shoulder, and the other in the median. Arrays were marked with 

flags placed at a 3.0-m (10- ft) interval. The station numbers referenced in this study 

were collocated with the  flags.  The Vinton County test strip is 240 m (800 ft) in length 

and abuts a bridge (Figure 31). 

 

 
Figure 31.  Diagram of the Vinton County test site with station numbers and surface 
wave test locations. 
 
 
 

b.  Results 

For both the median and north berm sites the P- and S-wave models do not correspond  to 

the bedrock depth.  When compared to borehole data the S-wave models seem to more 
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accurately reflect depth to bedrock.  The general trend of the survey site is that bedrock 

shallows from west to east.  According to the S-wave models (Figs.32 and 33) the 

minimum depth to bedrock is 1.2 m (4 feet) below the north berm and 1 m (3 feet) below 

the median.  P-wave models (Figs. 34 and 35) show the minimum depth to bedrock to be 

approximately 2.7 m  (9 feet) below the surface at both locations.  At the western end of 

the line, S-wave models indicate that bedrock depth drops to 12 m (40 feet) below the 

surface at the median and 16 m (54 feet) below the north berm.  P-wave models show 

significantly shallower occurrences of bedrock of 7.9 m (26 feet) below the median and 

10.6 m (35 feet) below the north berm.  No evidence of collapse or problem zones is 

apparent.   
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Figure 33.  Apparent depth to bedrock from S-wave seismic refraction in the median 
at the Vinton County site. 
 
 

 
 
Figure 34.  Apparent depth to bedrock from P-wave seismic refraction on the north 
side at the Vinton County site. 
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At this location the shallow mines are expected to be air filled, thus producing a higher 

resistivity than the surrounding rock material.  Resistivity below the median (Fig.36a) is 

low, averaging 1.8 to 6 Ω*m (6 to 20 Ω*ft).  There are no indications of prior mining 

activity at this location.  Resistivity along the north   berm (Fig.36b) is also low, 

averaging 4.9 Ω*m (16 Ω*ft).  One apparent anomaly is present at survey location 152 to 

183 m (500 to 600 feet) [133+22.5 to 134+23.8] along the survey line.  This anomaly has 

an average apparent resistivity value of 30 Ω*m (100 Ω*ft) at a depth of 8.8 m (29 feet).  

This does correspond to nearby mining locations indicated by a map supplied by ODOT.  

The depth of this void is roughly equivalent to the void encountered in borehole B1. 

Gravity data at the median location (Fig.37) follows the same bedrock trend as seen in 

the refraction models, bedrock shallows from west to east.  No evidence of mining is 

apparent.  Gravity data from the berm location (Fig. 38) shows a gravity high at the 
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(a) Median 

   

 
(b) North berm 

 

Figure 36.  2D resistivity imaging of the Vinton County site.  (a) median, (b) north 
 side.   
Top:  measured apparent resistvity pseudosection. 
 Middle:  calculated apparent resisitivity pseudosection. 
  Bottom:  Inverse model resistivity section. 
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Figure 37.  Smoothed gravity profile along the median. 
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Figure 38.  Smoothed gravity profile along the north berm. 

 

western end of the line which quickly decreases.  These data seem to be abnormal from 

what we expected to see, which may be the result of a deeper regional trend.  No 

evidence of mining is apparent at this location.   

 

SASW composite experimental dispersion curves with theoretical fits are shown in 

Figure 39, and the resulting shear wave velocity profiles are shown in Figure 40.  Shear  
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Figure 39.  Experimental dispersion curves, with theoretical fits (solid line) for Vinton 

County site.  Different symbols represent SASW measurements at different 

receiver spacings.  
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Figure 40.  Shear wave velocity profiles for Vinton County site.  All profiles are shown, 

with indicated setup highlighted.   
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wave velocities determined from SASW measurements ranged from 50 m/s, which is 

appropriate for soft soil, to an imposed maximum of 2200 m/s. The upper-bound shear 

wave velocity was selected by considering the maximum P-wave velocity measured at 

the site (2,950 m/s) and a minimum Poisson’s ratio that can be considered reasonable for 

rock (0.1; Goodman, 1980, Table 6.1). Shear wave velocities at depth are low for Setup 

M, and high for Setups I and L.  Recall that Setup M was collocated with a known cavity.  

The shear wave velocity profile for this location has a distinctly different shape from 

others generated at the site.  

 

Two sets of constant offset measurements were collected. Setup K was situated along a 

210 m (700 ft) array on the north shoulder with 6.0 m offset and 8.0 m receiver spacing, 

starting at Sta. 4 and ending at Sta. 74. Source energy was applied using both the 

sledgehammer and the EWG. Setup N was situated along the centerline of the median 

with 4.5 m (15 ft) offset and 9 m (30 ft) receiver spacing, starting at Sta. 17 and ending at 

Sta. 63.5.  Source energy was supplied with the EWG.  The testing geometry, which was 

slightly different from that used on the other arrays, was selected for convenience, to take 

advantage of the flags from the other geophysical surveys.   

 

The unwrapped phase data from the two constant offset measurement arrays are shown in 

Figures. 41 and 42.  The interpreted anomalies are listed in Table 2,  and illustrated in 

Figure 43.  For comparison, anomalies indicated in SASW measurements (discussed 

earlier) in the same vicinity are also provided in  Table 2.  
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Figure 41.  Forward (solid) and reverse (dashed) constant-offset measurements on the  

shoulder at Vinton County Site (Setup K).  
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Figure 42.  Forward (solid) and reverse (dashed) constant-offset measurements on 

the median at Vinton County Site (Setup N).  Station numbers are indicated. 
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Figure 43.  Suspected anomalies indicated by constant-offset measurements for Vinton 

County site. 

 

The pattern of suspected anomalies showed a distribution of cavities that might be 

expected for a room-and-pillar mine.  The shear wave velocity profile located over the 

known cavity (Setup M, Sta. 72) did indicate reduced stiffness with respect to other 

locations along the test section.  Profiling data did not indicate a cavity at that station, but 

adjoining measurements were interpreted to have suspected cavities.  

 

Aside from  anomalies seen in the resistivity surface wave data there is no geophysical 

evidence to suggest the possibility of future collapse.  We recommend drilling be 

performed at this site, specifically, if there is a concern over the apparent mining feature. 
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Table 2.   Seismic anomalies determined by surface wave measurements.  Rankings are  

     0 for none, 1 for slight, and 2 for significant.  . [Profiling was advanced in two station  

     increments.  The three SASW surveys were centered at the stations with table entries.] 

 

Vinton County Site 

Shoulder Median 

Anomaly 

Ranking 

Anomaly 

Ranking  

Anomaly 

Ranking  

Anomaly

 Ranking

Station 

No. 

Profiling 

Setup K 

SASW 

Stn. 

No.

Profiling

Setup N

SASW 

Stn. 

No.

Profiling 

Setup N 

Stn. 

No. 

Profiling

Setup N 

4 1  40 2  17 1 44 0 

6 1  42 0  18.5 0 45.5 1 

8 1  44 1 1 20 0 47 0 

10 1  46 2  21.5 2 48.5 0 

12 0  48 1  23 1 50 2 

14 0 1 50 1  24.5 1 51.5 2 

16 0  52 1  26 2 53 2 

18 2  54 2  27.5 1 54.5 2 

20 1  56 1  29 1 56 2 

22 2  58 0  30.5 1 57.5 2 

24 1  60 0  32 0 59 2 

26 2  62 1  33.5 0 60.5 2 

28 2  64 1 2 35 2 62 1 

30 2 2 66 1  36.5 1 63.5 1 

32 1  68 1  38 2   

34 1  70 1  39.5 0   

36 2  72 0 2 41 1   

38 2  74 1  42.5 0   
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C.  Perry County Site – Phase II 

 

a. Introduction 

 
The survey lines in Jackson and Vinton Counties were relatively short.  A much longer 

site was selected in Perry County, Ohio, for the Phase II studies.  The site was 

recommended by ODOT because subsurface mines were known in the area and old mine 

maps were available.  The stretch of highway was relatively straight and had wide areas 

on the east side for safely conducting the field data acquisition.  The results of Phase I 

were used to choose seismic refraction and resistivity as the most effective techniques.  

We recommended to ODOT that surface wave profiling be added to the other techniques 

being employed at the site but this was not included due to budgetary constraints.   The 

experience gained in Phase I was used to design the data acquisition plan for this phase.   

   

b.  Site Location and Mining History 

The site, located in Monroe Township, Perry County, Ohio, is approximately 19 miles 

north of Athens (Figure 1).  Surveys were conducted along the east side of State Route 

13.  The entire length of the line is approximately 4.5 kilometers.  The village of Corning 

lies approximately in the middle of the line. 

 

The first reported production of coal in Ohio was in 1800.  This was 3 years prior to its 

entrance as the 17th state of the union.  The first known production in Perry Co., Ohio 

was in 1816 and as of 1993 over 395,321 tons of coal have been removed from Perry Co.  

From 1800 to1993 the cumulative production of coal in Ohio was 218,954,437 tons, 

making Ohio 4th in production (Crowell, 1995).  Coal was mined entirely by hand until 

1876, when the first coal-cutting machine was put into operation.  The primary method of 

underground mining was room and pillar.  In this process, coal is mined in rooms 

separated at regular intervals by roof-supporting pillars.  Towards the completion of  

mining operation, the pillars were often further removed, increasing the potential for 

collapse.  
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c.  Geology of the Site 

Perry County lies within glaciated and unglaciated portions of the Appalachian Plateau.  

Glaciation is restricted to the northwestern region of the county leaving the eastern and 

southern regions primarily unglaciated.  However, isolated patches of glacial outwash or 

colluvium may be found in the southeastern portions of the county where the test site is 

located.   

 

Bedrock dips to the east-southeast, exposing Mississippian rock in the western parts of 

the county and Pennsylvanian rocks elsewhere.  Since the study site lies within the 

southeastern region of the county only descriptions of Pennsylvanian rocks will be given.  

There are potentially two major Pennsylvanian formations found at this site, the 

Conemaugh and the Allegheny.  Figure 44 is a generalized stratigraphic section of the  

Conemaugh (lower) and Allegheny Formations.  The Conemaugh has little economic 

importance as the coal found within this formation is commonly bony or shaly and less 

than one meter thick.  The Allegheny formation is without question the most 

economically important formation in this region.  The major coal beds found within the 

Allegheny formation are the Lower Kittanning (no.5), Middle Kittanning (no.6) and 

Upper Freeport (no.7).  Of these three, the Middle Kittanning (no.6) is the most important 

one.  The Middle Kittanning underlies the eastern and southeastern regions of Perry 

County and is not known to be less than 1 meter thick except in areas of the Jumbo Fault 

(Brant and DeLong 1960).  Not a fault at all, the Jumbo Fault is a miner’s term for areas 

where the Middle Kittanning coal is absent and replaced by sandstone, shale or 

limestone.  Figure 45 is an isopach map of the Middle Kittanning also showing the extent 

of the Jumbo Fault.  USGS and drilling logs from local oil and gas companies suggest 

that the Middle Kittanning (no.6), which was mined here, is approximately 12 to 18 

meters below the surface along State Route 13 near the Village of Corning.   
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Figure 44. Generalized stratigraphic section of the Conemaugh (lower) and Allegheny 

Formations. (Modified from Brant and DeLong, 1960) 
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Figure 45.  Isopach map showing the thickness of the Middle Kittaning Coal and the 
Jumbo Fault where this coal is absent (after Brant and DeLong, 1960). 
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d. Methods and Acquisistion 

 
Seismic Refraction  

Field Procedures 

The survey consisted of one line parallel to State Route 13, approximately 2 to 4 meters 

east of the roadway.  P-wave data were collected along the entire length of the 4.5 km 

line but due to time constraints only 2.5 km of S-wave data were collected.  

 

We used the standard in-line spread in which the energy source or shot point was placed 

along the same line as the geophones. Figure 46 shows the geophone and shotpoint 

geometry.  Five shots were taken for every spread: One shot (A) 2 meters before the first 

flag, 3 interior shots (B, C, D) and a final shot (E) 2 meters beyond the last flag.  The 

total length of each spread was 96 meters and to assure good data we overlapped each 

spread by one cable length or 24 meters.  

 

 
Figure 46.  Geophone and shotpoint pattern for Perry County survey.  One move-up is 
shown. 
 
The survey was conducted using a 48-channel Strataview engineering seismograph with 

30-hertz geophones at 2m-station spacing.  Both P- and S-wave seismic refraction data 

were collected.  The P-wave data were gathered using a Bison elastic wave generator 

(EWG) as the energy source.  The S-wave data were gathered using a metal rectangular 
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box, which was then struck on each side 10 to 20 times using a 5.5-kg (12-lb) 

sledgehammer.  Reversing the recording polarity and then striking the box on the 

opposite side can effectively cancel out the P-waves in the summed records, leaving only 

the S-waves.   

 

Data Processing using SIP 

The SIP software was again used to develop travel-time curves, depth models and obtain 

velocities for both the P- and S-wave surveys.  We created 2-layer models and thus two 

lines with differing slopes were used in our graphs.  Figure 47 is an example travel-time 

curve derived from one shot in the P-wave data set.  Travel-time curves for both P- and 

S-waves are included in Appendices F and G.  From a set of travel-time curves one may 

determine rock layer velocities and depth to interface (bedrock).  For later interpretation 

we will be focusing on depth to bedrock or more specifically lateral changes in depth to 

bedrock that may be useful for detecting the presence of a void or collapse.  In the event  

of a void collapse, overlying unconsolidated material will fill in the void space.  In the 

depth model created from the travel-time curves an anomalously low bedrock elevation 

may indicate the presence of this collapse.  This anomaly could be the result of collapse 

but may also be due to slower velocities resulting from fracturing.   
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Figure 47.  Typical time-travel curve for sesmic refraction. 
 

Results   

Using the SIP program we chose the first breaks for each shot, created travel-time curves 

assigning a layer number to each first arrival and finally created cross-sectional depth 

models.  Each depth model consists of 5 spreads with 20 shots and is approximately 400 

m in length.  Because the maximum vertical depth for the models is only 20-30 meters 

and the horizontal length is 400 m, vertical exaggeration is necessary for plotting the 

results.  This must be taken into consideration during the interpretation process because 

vertical exaggeration will enhance the appearance of lateral changes in bedrock depth.  

Cross-sectional depth models for both P- and S-waves are found in Appendices H and I. 

 

P-waves 

Analysis of the seismic P-wave refraction data resulted in a 2-layer depth model for the 

entire length of the survey.  No refraction wave arrivals from deeper layers were 

observed so a thickness of layer 2 cannot be calculated.  The layer-2, P-wave velocities 

range from 2100 to 3000 m/s. Layer 1 ranges in thickness from 1 to 16 meters and has a 

P-wave velocity ranging from 596 m/s to 1100 m/s.  This layer is believed to be the 

combination of colluvium and unconsolidated road fill used in the construction of State 

Route 13.  Layer 2 is believed to be bedrock of the Allegheny Formation, which could be 

sandstone, limestone or shale along various sections of the survey. 

 

Due to the undulating nature of the bedrock surface in the models, it is difficult to discern 

bedrock anomalies caused by mining from those found over areas that are considered 

unmined.  Based on P-wave models, however, four exploratory drilling sites were chosen 

as potential collapse zones or uncharted mining zones.  These sites are given in Table 3. 

 

There were two sites (sites 1 and 3) that were chosen based on apparent irregular bedrock 

topography shown in the cross-sectional depth models [Appendix H, Figures H3 (a) and 

H5 (a)].  Whether this irregularity is caused by bedrock undulation, fracturing or 

heterogeneous fill is unknown.  According to the maps, site 3 corresponds to an 
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underlying mined zone.  Site 1 displayed similar characteristics but the maps indicated no 

previous mining operations.  At site 1 State Route 13 was built over an existing pond.  

The pond was either removed or filled in during construction of State Route 13.  Variant 

velocities found within this zone may have been produced by heterogeneous fill, 

although seepage from the pond along fractures (natural or mine induced) and associated 

weathering in the underlying bedrock could produce the same effect. 

 

Sites 2 and 4 were chosen because they displayed large spikes or increases in apparent 

bedrock depth, which correlated to nearby mines.  Site 2, just north of the village of 

Corning, overlies at least two designated mining structures.  One is a room or pathway 

connected to the Nelson Rodgers mine and the other is labeled as a haulage entry 

approximately 90 meters to the north.  Mine number 11 and another haulage entry are 

also shown to be 100+ meters to the south of this site.  No obvious P-wave anomalies are 

associated with either but an elongated low resistivity anomaly is found along the entire 

length of this site, which will be discussed in detail later.  It is therefore plausible that 

other uncharted rooms or tunnels may connect these individual mining structures.  Site 4 

is also characterized by a bedrock low which overlies a mining zone apparently 

consisting of several rooms and pillars.  This anomaly is smooth and less obvious but the 

correlation to the underlying mining zone can not be ignored.  

 

Table 3: Recommended Exploratory Drilling Sites Based on P-wave Models  

Site ODOT Station 

Intervals (ft) 

WSU Survey 

Location (m) 

Approximate 

Depth (m) 

1 208+36 – 213+28 1450-1600 15 

2 242+81 – 246+09 2500-2600 10 

3 259+21 – 265+77 3000-3200 8 

4 271+68 – 274+63 3380-3470 10 
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S-waves 

Analysis of the S-wave refraction data also resulted in a 2-layer model.  In fact, the 

models almost mirrored those from the P-wave data set.  Layer 1 ranges in thickness 

from 0 to 19 meters with S-wave velocities ranging from 272-445 m/s.  Again this layer 

is believed to represent unconsolidated road fill and/or colluvium.  With no observed 

third layer, a thickness for layer 2 could not be determined.  The S-wave velocity of layer 

2 ranges from 718-1335 m/s representing rock units from the Allegheny Formation. 

 

The undulating peaks and valleys from the S-wave models seem to be more exaggerated 

than those of the P-wave models.  This may be due to incompletely canceled P-waves, 

which often masked the S-wave arrivals making it difficult to accurately determine their 

time.  This adds uncertainty to our models.  For this reason the S-wave models were not 

used to determine site locations but rather as reinforcement to the results seen in the P-

wave models.  At each of the sites chosen from the P-wave data sets, S-wave models 

displayed similar characteristics but to an exaggerated extent. 

 
Electrical Resistivity 
The survey was conducted using a Sting/Swift R1 resistivity meter utilizing 28 electrodes 

driven into the ground at a 6-meter spacing. In dry conditions it was sometimes necessary 

to wet the ground around the spikes to assure a good current flow.   The instrument was 

set to the dipole-dipole configuration.  During the data acquisition several areas along the 

line were avoided due to the concern that conductive objects such as fences and 

guardrails would produce unreliable results.  The areas of data acquisition versus areas 

avoided have been highlighted in Figure 48.  
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Figure 48.  Site Map.  White line indicates where resistivity data were collected. 
      (Background abandoned mine map after DeLong, 1983) 
 

As in Phase I the resisitivity data were interpreted using Res2Dinv 2-D inversion 

software.  The inversion program uses datum points and rectangular blocks from what is 

known as the pseudosection to create the model via a least-squares optimization 

technique.  The overall output from the program consists of three models seen in Figure 

49: a measured apparent resistivity pseudosection, a calculated resistivity pseudosection 
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and an inverse model resistivity section.  Each model uses a graded color scale to show 

various ranges of resistivity values.  The final model or the inverse model resistivity 

section may differ depending on several user-defined parameters.  The goal is to 

minimize the RMS error between the values of the modeled and measured 

pseudosections within the constraints of having a geologically reasonable model.  It was 

necessary to establish maximum error above which data may be deemed unreliable.  We 

set a goal of 10% but often could find no major changes in the models as the error 

percent dropped during the iteration process.  In some cases it was impossible to get the 

error below even 30% despite editing bad data points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49.  Example of 2D resistivity imaging results. 
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The inversion process resulted in seven models, spanning the length of the survey.  It is 

unfortunate, however, that several gaps exist within the data set due to nearby conductive 

objects such as guardrails or fences, which prevented the acquisition of reliable data.  2D 

resistivity models can be found in Appendix J. 

 

Based on the mine maps supplied by ODOT, we were able to correlate areas of known 

mining operations to areas of low resistivity anomalies.  The apparent resistivity values 

of the anomalies range from less than 0.43 Ω*m to 50 Ω*m.  There were also zones of 

low resistivity that did not correspond to areas of known mining operations.  This may be 

due to poor mine maps or to high quantities of clay found within the road fill or 

colluvium.  Clay is a highly porous but poorly permeable material and thus can store a 

large volume of water.  It has free ions on the mineral grain surfaces, which causes clay 

to act as a good electrical conductor. 

  

Zones of higher resistivity ranging in value from 50 Ω*m to 400 Ω*m are believed to be 

those of bedrock and intact coal.  Coal in its virgin state commonly has a resistivity of 

100 Ω*m to 500 Ω*m depending on saturation, pore water resistivity, porosity and 

permeability.  Sandstone and limestone can also be expected to have apparent resistivity 

values of 50 Ω*m up to 108 Ω*m. 

 

Three drilling sites were selected based on the resistivity models.   These are shown in 

Table 4.  The first site, also labeled Site 2, is an elongated low resistivity zone from 6 to 8 

meters deep and at least 216 m in length from survey location 2472 to 2688 m [Appendix 

J, Fig.J1 (c)].  This is the site that corresponds to Site 2 of the P-wave models mentioned 

in the refraction results.  Low resistivity values, ranging from .43 Ω*m to 12 Ω*m, are 

located within and extending beyond the regions of the Nelson Rodgers mine and the 

haulage entry.  According to engineering maps, there is a 4-inch to 6-inch cast iron pipe 

located 2 m under the centerline of the roadway along this segment, which likely causes a 

large decrease in overall resistivity there.  Several local anomalies, however, overlay the 

effects of the pipe.  For this reason and because of the correlation with P-wave models, 
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this a good drilling location.  The second site (Site 5) can be broken down into two 

halves.  The first half approximately 50 m in length and 9 m deep from survey location 

3690 to 3738 m consist of three local anomalies ranging from 23 to 60 Ω*m.  These 

extend north to the larger, deeper half of the site located from 3738 to 3840 m.  Here the 

anomaly is approximately 100 m in length and again ranges from 23 to 60 Ω*m, 

averaging 30 Ω*m [Appendix J, Fig.J1 (d)].  Nothing from the mine maps or the 

refraction models corresponds with these anomalies or suggests a cause, and so 

exploratory drilling is recommended.  A third site (Site 6) [Appendix J, Fig.J1 (a) and 

(b)] was also identified for ODOT to conduct exploratory borings.  At this site, a 

significantly  low resistivity zone, in the deeper part of the section, is present from survey 

location 192 to 684 m.  It is uncertain whether this anomaly is continuous due to an 

extensive gap in the data set from survey location 264 to 366 m.  However, a large 

discontinuous mined zone, as indicated by the mine maps, is present from survey location 

150 to 840 m.  But the most interesting feature of this model is the abrupt change in 

resistivity at survey location 198 m.  This may represent the actual boundary between 

intact coal and mined coal. 

 

Table 4: Recommended Exploratory Drilling Sites Based on Resistivity Models 

Site ODOT Station 

Intervals (ft) 

Survey  

Location (m) 

Approximate  

Depth (m) 

2 241+88 – 248+97 2472 - 2688 10 

5 281+85 – 286+77 3690 - 3840 8 –14 

6 165+70.5 – 188+34.3 150 - 840 16+ 

 

e.  Data Comparison 

 

The P- and S-wave depth models and the resistivity models yielded a moderate to good 

correlation to mined versus unmined areas indicated by mine maps given to us by ODOT.  

In the P- and S-wave depth models, apparent erratic bedrock topography or sharp 

increases in bedrock depth, sometimes correlated well with known mining zones.  P-
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wave depth models proved to be more reasonable than those resulting from S-waves, 

which may be attributed to incompletely cancelled P-waves in the S-wave data sets.  This 

made it difficult to pick first breaks and resulted in poorer models. 

 

Some areas of low resistivity were shown to correlate well with known mining zones.  

However, in only one case did an anomaly from resistivity models correlate with an 

anomaly from refraction depth models.  This site was complicated by a water line, 

located 2 meters below the centerline of the roadway, which may be decreasing the 

overall resistivity of the site.  Part of the lack of correlation between the two methods can 

be attributed to  resistivity data not being collected along the entirety of the line. 

Conductive grounded obstacles, such as guardrails or fences, caused these breaks in 

continuity because they  would have likely contributed to unreliable data.  

It should also be mentioned that neither method was capable of delineating all the mined 

zones shown on the maps.  In fact, both the refraction models and resistivity models 

showed anomalous characteristics where no mine workings were indicated by the maps. 

Without the benefits of the drilling data, it is difficult to determine whether these 

anomalies are due to unmapped mines or other geologic features.   

 

The  main purpose of Phase II of the project was to use results of Phase I to develop 

better field techniques for locating voids under roadways or distinguishing competent 

rock from problem areas.  We believe that seismic refraction and 2D-resistivity imaging 

techniques can be successful for these applications.  In our opinion, no collapse hazards 

were identified at the Perry County site.  We must emphasise, however,  that without the 

ground truth obtained from drilling, it is difficult to assess the accuracy of our 

interpretation. 
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IV. Conclusions and Recommendations 
 

 This research project started in 1998 as a joint effort between Wright State University 

and the Ohio Department of Transportation.  The objective was to develop a 

reconnaissance geophysical method for locating zones in coal mining regions, where a 

highway has the potential for collapse.  The project consisted of two phases.  During 

Phase I, several geophysical methods were tested at two sites along Ohio Route 32, one 

in Jackson County and the other in Vinton County.  The goal was to determine the 

method or combination of methods best able to locate problem zones.  We concluded that 

seismic refraction and 2D-resistivity imaging were the most promising techniques.  

Subsequently, during Phase II, seismic refraction and 2D-resistivity imaging were once 

again implemented.  A 4.5-km section along State Route 13 in Perry County, Ohio was 

chosen as the test site.  The goal of this phase was to determine if zones of potential 

problems could be identified. 

 

Geologically the sites differed in lithologic composition and in bedrock depth.  This is 

believed to be a significant factor contributing to the differing results among the studies.  

The Jackson County site, having bedrock as shallow as 0.5 meter, displayed the best 

results.  This was especially true of the two most successful geophysical methods, 

seismic refraction and 2D-resistivity imaging.  Both seismic refraction and 2D-resistivity 

were able to locate voids within the coal bed 2 to 4 meters below the surface.  This was 

confirmed by drilling and subsequent excavation of the site.  The Vinton County data 

acquired at the same time showed little evidence of collapse or problem areas.  The depth 

to bedrock of this site was  greater and more variable due to undulating topography, 

which required the use of road fill to accommodate a relativity horizontal roadway.  

Because of the evidence of active failure at the Jackson County site, less emphasis was 

given to the Vinton County site.  Out of 5 previous drilling locations at the Vinton 

County site, near mapped subsurface mines, only one encountered a significant void.  

This combined with the lack of geophysical evidence to suggest a potential problem, has 

led us to believe that the probability of collapse in the near future is low.  The Perry 
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County site also had highly variable bedrock depth.  The upper unconsolidated layer 

ranged in thickness from 1 to 16 meters.  This information was attained from the P-wave 

seismic refraction models, which we estimated to be accurate within + 10%.  As part of 

the project requirements, 6 drilling locations were identified for ODOT.  Two of these 

sites had geophysical evidence that suggested  there is potential rock breakdown or 

fracturing.  One of these was located in the region of a mined area.  Other sites were 

chosen because anomalies were seen at the locations of mined areas suggesting we may 

have been able to identify some of the mines where collapse has not taken place.  

Because of the environmental concerns related to releasing artesian water from 

abandoned mines, ODOT decided not to drill.  Consequently,  our interpretations were 

untested.  

 

Both seismic refraction and 2D-resistivity imaging have certain limitations.  One 

limitation common to both methods is the target depth.  Both resolution and reliability of 

data decrease with depth.  Another limitation of seismic refraction occurs when there is a 

high velocity layer located above the target.  In this situation,  pertinent information  

related to the target may be missed.  Resistivity is limited by the presence of nearby 

conductive objects, which may result in unreliable data. 

 

The results of any geophysical method are non-unique, that is, an anomaly observed by 

the method may be the result of the proposed target, but could also be produced by other 

unrelated geologic conditions.  Geophysical techniques are used to locate zones of 

contrasting physical properties such as density or resistivity.  These techniques have 

proven to be useful, however they must be used in conjunction with ground truthing 

methods such as drilling.  The results of a geophysical survey can be used to rule out 

areas where problems do not exist, so that the focus may be on areas where problems do 

exist. 

 

 In light of the above discussion, concerning the present research studies, we have 

determined that geophysics can be successfully  employed to locate problem areas within 

the subsurface.  At the Jackson County site, where geologic conditions were conducive, 
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we were able to identify voids at depths of 2 to 4 meters below the surface using seismic 

refraction and 2D-resistivity imaging.  For other more geologically complicated sites, 

such as the Vinton County and Perry County sites,  further studies are needed to develop 

general field procedures for broad reconnaissance.  The ideal site should contain 

evidence of collapse and there should also be detailed geologic records.  It is also 

necessary that there are no environmental conditions that may prohibit drilling. 

 

 Consideration of the usefulness of the seismic refraction attenuation study and the 

limitations of the seismic refraction method, as it was applied in this study, suggests the 

need for a modified approach.  The modified approach should take advantage of the 

sensitivity of upcoming seismic waves to mines and disturbed areas and be less 

dependent on variations in the near-surface rock layering.  This concept, which is worth 

future research effort, is to try using seismic waves coming from greater depth (reflected 

or refracted waves) to analyze differences in arrival strengths (attenuation) and delay 

times due to shallow anomalous zones such as voids or collapsed mines.   The proposed 

modified approach would require a longer horizontal source-receiver distance than was 

utilized in the research we reported here.  The longer horizontal source-receiver distance 

would allow upcoming waves to originate deeper than the target horizon. 
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Appendix A: P Wave Travel Time Data, North and South Sides 

 



 - 100 - 

 

 
Figure A.1:  P Wave Travel Time Curve, North Side.   

 

Figure A.2:  P Wave Travel Time Curve, South Side.   
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Appendix B: P Wave Refraction Model 
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Appendix C: S Wave Travel Time Data, North and South Sides 
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  Figure C.2: S Wave Travel Time Curve, South Side.   

       

Figure C.1: S Wave Travel Time Curve, North Side.   
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Appendix D: S Wave Refraction Model 
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Appendix E: Gravity Data Spreadsheets 



 - 108 - 

Table E.1:  Instrument Drift for Gravimeter 

 
 

Station 
Reading 

1 Reading 2 Time 1 Time 2

Instrument Drift
Between Bases

(Dial 
Divisions/min) 

Total Drift 
(Dial 

Divisions) 
Base 1 3576.620 3576.620 10:16 10:17  
Base 2 3576.650 3576.650 11:18 11:18 -0.000483871 -0.030
Base 3 3576.650 3576.650 11:44 11:45 0 0.000
Base 4  3576.710 3576.710 12:45 12:46 -0.000983607 -0.060
Base 5 3576.700 3576.700 13:44 13:45 0.000169492 0.010
Base 6 3576.690 3576.690 14:47 14:47 0.00015873 0.010
Base 7 3576.680 3576.680 15:40 15:41 0.000188679 0.010
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Appendix F:  P-wave Travel-Time Curves 
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Appendix G: S-wave Travel-Time Curves 
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Appendix H: P-wave Cross-Sectional Depth Models 
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Appendix I: S-wave Cross-Sectional Depth Models 
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Appendix J: 2D Resistivity Models 
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